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A pseudoclassical model is proposed to describe massive Dirac (spin-one-half) 
particles in arbitrary odd dimensions. The quantization of the model reproduces the 
minimal quantum theory of spinning particles in such dimensions. A dimensional 
duality between the model proposed and the pseudoclassical description of Weyl 
particles in even dimensions is discussed. 

1. I N T R O D U C T I O N  

One can construct a pseudoclassical  model  to describe massive Dirac 
(spin-one-half) particles in 3 + 1 dimensions (Berezin and Marinov, 1975, 
1977; Brink et  al.,  1976, 1977; Casalbuoni,  1976; Barducci  et  al . ,  1976; 
Balachandran et  al. ,  1977; Henneaux and Teitelboim, 1982; Gitman and 
Tyutin, 1990a; Fradkin and Gitman,  1991). Its generalization to the case o f  
even dimensions D = 2n, n = 3, 4 . . . . .  can be done by means o f  direct 
dimensional  extension (Grigoryan and Grigoryan,  1991). The corresponding 
action has the form 

S =  -2ee e - ~ - + L  "e ~ - m q x  ~ X - t % ~  dx (1) 

where :(-2 = :t.~t.; the Greek (Lorentz) indices p., v . . . .  run over  O, l . . . . .  
D - l,  whereas the Latin ones a, b run over O, l . . . . .  D; 

"q.v = diag( l, - 1 . . . . .  - 1 ), "qab = diag( l, - 1 . . . . .  - 1 ) 
o o+1 
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The variables x r and e are even and ~ ,  X are odd. The quantization of the 
model leads to the Dirac quantum theory of the spin-one-half particle (to the 
Dirac equation). 

Attempts to extend the pseudoclassical description to the arbitrary odd- 
dimensional case have met some problems, which are connected with the 
absence of an analog of the ",/5-matrix in such dimensions. For instance, in 
2n + l dimensions the direct generalization of the standard action (Berezin 
and Marinov, 1975, 1977; Brink et  al., 1976, 1977; Casalbuoni, 1976; Bar- 
ducci et al., 1976; Balachandran et al., 1977; Henneaux and Teitelboim, 1982; 
Gitman and Tyutin, 1990a; Fradkin and Gitman, 1991) does not reproduce a 
minimal quantum theory of spinning particles, where particles with spin 
1/2 and -1 /2  have to be considered as different. In Plyuschchay (1993) and 
Cortes et al. (1993) modifications of the standard action were proposed to 
solve the problem. From our point of view both have essential shortcomings 
and the problem is not closed. For instance, the first action of Plyuschchay 
(1993) and Cortes et  al. (1993) is classically equivalent to the standard 
action and does not provide the required quantum properties in the course 
of canonical and path-integral quantization. Moreover, it is P- and T-invariant, 
so that an anomaly is present. Another one in Plyuschchay (1993) and Cortes 
et al. (1993) does not obey supersymmetries and therefore loses the main 
attractive feature in such models, which allows one to treat them as prototypes 
of superstrings or some modes in superstring theory. Gitman et  al. (1995a) 
proposed a new pseudoclassical model for a massive Dirac particle in 2 + 
I dimensions which obeys all the necessary symmetries, is P- and T-noninvari- 
ant, and reproduces the minimal quantum theory of the Dirac particle in 2 
+ l dimensions. It turns out to be possible to generalize this model to the 
arbitrary odd-dimensional case. We present such a generalization in the pres- 
ent paper. First, we consider the Hamiltonization of the theory and its quantiza- 
tion. Then we discuss a remarkable dimensional duality between the model 
proposed and the pseudoclassical description of massless spinning particles 
in even dimensions. 

2. PSEUDOCLASSICAL DESCRIPTION 

In odd dimension D = 2n + 1 we propose the following action to 
describe spinning particles: 

m 2 3 
Lmtll2n + l x - I e --~ - ~,  m K -  ~ba(~ 

s 

1 

 [z2 
s =  - ~ e  - 

fo' =- L d r ,  

dr 

(2L)" 
Z" = .'t~' - t . ~  + 

(2n)! 
e ~ P ' " ' P 2 " % ,  �9 �9 �9 ~ p ~ K  ( 2 )  
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Here  a new even variable  K is introduced and e ~ ' x  is the Levi -Civi ta  tensor 
density in 2n + 1 d imens ions  normal ized by e0~...2, = 1; s is an even constant  
of  the Berezin algebra.  We suppose that x ~" and ~ are Lorentz  vectors and 
e, K, ~2~+t, • are scalars,  so that the action (2) is invariant under the restricted 
Lorentz  t ransformat ions  (but not P-  and T-invariant). There  are three types 
of  gauge t ransformat ions  under  which the action (2) is invariant: 
reparametr izat ions 

d d 
8x ~ = ,r 8e = ~ (e~), 8t~" = ~ ,  8X = ~ (• 

d 
8K = ~ (KO (3) 

with an even paramete r  ~('r); super t ransformat ions  

Z ~ 8~2~+t = m 
~ x  ~ = t ,~ 'e ,  ~ e  = t,Xr ~ t ~  = ~ee r 2 r 

8X = e, 8K = 0 (4 )  

with an odd paramete r  r and additional super t ransformat ions  

~x ~ = _ (20"  
(2n)! C'm'"Pz"dJm " ' "  t~Pz"O' 

5 ~  ~ = ~ (2 i )"  
e (2n)! EP'Ol'"P2nZPl~P2 " ' "  tllP2"nO' 

81< = 0 + s 22~+ld'(n -- l)z~ e~pt.-.pz~ 
m (2n)le ~ m ~ p 2 - - -  ~p2~ O, 

8e = 8t~ 2,'+t = 8• = 0 (5) 

with an even paramete r  0('r). 
The  total angular  m o m e n t u m  tensor M~, is 

Me ,  = xr - x,ar~ + L [ ~ ,  ~ , ]  (6) 

where  "tr~ = 0L/0.~ ~. 
Going over  to the Hami l ton ian  formulat ion,  we  introduce the canoni-  

cal m o m e n t a  

OL 
xr~ - 0.r ~ - 

OL 
PK --  --  O, 

Of( 

1 OL OrL 
Zr P~ - - 0 ,  P x  - - -  - 0 ,  

e Od 0~( 

OrL 
P" = a~J" = - t # , ,  (7) 
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It follows from (7) that there exist primary constraints 

ci)~) = p~, ~ t )  = Px, ~ t )  = p~, cI)~) = p~ + ir (8) 

Constructing the total Hamiltonian H (t) according to the standard procedure 
(Dirac, 1964; Gitman and Tyutin, 1990b), we get H (~) = H + hAdP~ ~ where 

e H = - ~  ('rr 2 - m 2) + L(a'r.~" + m~2"+~)X 

_ [ (2Q" 1 ] 
L(-~n). v e~P'"'P~'~bp, . . .  ddpu - ~ sm K (9) 

From the consistency conditions d) "~ = {~(i), H.)}  = 0 we find secondary 
constraints ~(2) = 0, 

~12) = , r r ~  + m~2~+l, ~ 2 )  = ,rr2 _ m 2, 

~ 2 )  = (20"  I 
(2n)! ~"P""Pu~"%' " ' "  tG~  - ~ s m  (~o) 

and determine h, which corresponds to the primary constraints cI)[ ~ No more 
secondary constraints arise from the consistency conditions, and the Lagran- 
gian multipliers corresponding to the primary constraints @!l), i = 1, 2, 3, 
remain undetermined. The Hamiltonian (9) is proportional to the constraints, 
as one would expect in the case of a reparametrization-invariant theory. One 
can go over from the initial set of constraints @(o, cl)(2) to the equivalent 
ones  (I)(I), (i)(2), where ~(2) = ~(2)(t ~ __~ ~ = ~ + � 8 9  The new set of 
constraints can be explicitly divided into a set of the first-class constraints, 
which are (~!t), i = 1, 2, 3, ~(2)), and a set of second-class constraints 
@It). Thus, we are dealing with a theory with first-class constraints. 

3. QUANTIZATION 

Let us consider first the Dirac quantization, where the second-class 
constraints define the Dirac brackets and therefore the commutation relations, 
whereas the first-class constraints, being applied to the state vectors, define 
physical states. For essential operators and nonzeroth commutation relations 
one can obtain in the case under consideration 

1 .qab [,~, ~1 = L{x~, ~r~}o~.~,,~ = L~, [&, q?]+  = . [ ~ ,  Cb}o~.~,~ = -~ 

( I I )  

It is possible to construct a realization of the commutation relations (I I) in 
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a Hilbert  space ~ whose elements f ~ ~ are 2"+kcomponent  columns 
dependent  on x, 

Rx) = \u+(x)} (12) 

where u-z(x) are 2"-component  columns.  Then  

L y~ (13)  .~  = x~I, ~-r = -L0~I ,  ~l a = 

Here I is 2 "+~ X 2 "+~ unit matrix and 3 ~, a = 0, 1 . . . . .  2n + 1, are ~/- 
matrices in 2(n + 1) dimensions (Case, 1955), which we select in the spinor 
representation ~/0 = ant id iag( l , / ) ,  ~/i = antidiag((r i, _(ri),  i = 1, 2 . . . . .  2n 
+ 1, where I is a 2" • 2" unit matrix, and (r i are 2" x 2" (r-matrixes which 
obey the Clifford algebra, [(r", (rs]+ = 280. 

According to the scheme o f  quantization selected, the operators of  the 
first-class constraints have to be applied to the state vectors to define the 
physical sector, namely, ~(z)[(x) = 0, where  ~(2) are operators which corre-  
spond to the constraints (10). There is no ambigui ty  in the construction of  
the operator  +12) according to the classical function ~12). Taking into account  
the realization (12), (13), one can represent the equations ~(2)f(x) = 0 in the 
2"-component  form 

,f[~0~F~+ - m]u+(x) = 0 
[tc~r - m~/Z'+l]f(x) = 0 r [[L(9r - + m]u_(x) 0 (14) 

where two sets of ' , /-matrices F~, g = ___, in 2n + I dimensions are introduced, 

F~ = F+~,, [r~', F~]+ = 2~q ~ (15) 

There  is a relation ~ z )  = (~/z))2, so that the equation ~ 2 ) f  = 0 is not 
independent.  The  equation ~2)[(x)  = 0 can be represented in the form 

[(-L)" e~m...pz,(,.a~)%, . . . %z + sm]f(x) = O 
(2n)! 

or in 2"-component  form 

[LO~F~+ + (-1)"sm]u+(x) = 0 

[LO,F ~ _ + (- l)"sm]u_(x) = 0 (16) 
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In quantum theory one has to select s = ---1; then, combining equations (14) 
and (16), we get 

[LO.F~ - ~m]u~(x) = O, u_~(x) -- O, ~ = ( - l ) " s  = - 1  (17) 

To interpret the result obtained one has to calculate also the operators/17/.~ 
corresponding to the angular momentum tensor (6), 

0) 
#1~ = -~(x ,O.  - x.O,)  - ~ ~'o [I'+,. I'+j 

Thus, in the quantum mechanics constructed, the states with ~ = + are 
described by the 2"-component wave function u+(x), which obeys the Dirac 
equation in 2n + 1 dimensions and is transformed under the Lorentz transfor- 
mation as spin + 1/2. For ~ = - the quantization leads to the theory of  the 
2n + 1 Dirac particle with spin - 1 / 2  and the wave function u_(x). 

To quantize the theory canonically we have to impose as much as 
possible supplementary gauge conditions to the first-class constraints. In the 
case under consideration, it turns out to be possible to impose gauge conditions 
on all the first-class constraints, excluding the constraint ~2).  Thus, we fix 
the gauge freedom which corresponds to two types of  gauge transformations 
(3) and (4). As a result we remain only with one first-class constraint, which 
is a reduction of ~2)  to the rest of the constraints and gauge conditions. It 
can be used to specify the physical states. All the second-class constraints 
form the Dirac brackets. The following gauge conditions ~G = 0 are imposed: 
cI)~ = e + ~a'r6t, ~2 c = • ci)3 ~ = K, CI)4 ~ = X0 -- ~'r, and cl)5 c = t~ ~ where 
= - s i g n  T ~ [The gauge Xo - g'r = 0 was first proposed in Gitman and 
Tyutin (1990a-c)  as a conjugate gauge condition to the constraints "rr 2 - m 2 
= 0.] Using the consistency condition ~G = 0, one can determine the 
Lagrangian multipliers which correspond to the primary constraints cI)! t), i 
= 1, 2, 3. To go over to a time-independent set of constraints [to use the 
standard scheme of  quantization without any modifications (Gitman and 
Tyutin, 1990b)], we introduce the variable x6, x6 = x0 - g'r, instead of  x0, 
without changing the rest of  the variables. That is a canonical transformation 
in the space of  all variables with the generating function W = x0"tr6 + 
"r I "rr61 + Wo, where W0 is the generating function of  the identity transformation 
with respect to all variables except x ~ and "tr0. The transformed Hamiltonian 
H (t)' is of the form 

OW 
H (w = H  ~ + - - =  o~ + {cI)}, 

O'r 

t o = , v / ~ a + m  2, d =  1,2 . . . . .  2n (18) 
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where {~} are terms proportional to the constraints and ~o is the physical 
Hamiltonian. All the constraints of the theory can be represented after this 
canonical transformation in the following equivalent form: K = 0, ~ = 0, 
T = 0, where 

K = (e - to -l ,  P~; • Px; K, P~; x~, I'rr01 - co; ~o, Po) 

~b = (xra~ a + m~ 2"+1, Pk + u~k), k = 1, 2 . . . . .  2n + 1 

(2Q" sm 
T - (2n)! [~ " ' "  ~Ji2n "[- " ~ ,  ia = 1, 2 . . . . .  2n (19) 

The constraints K and ~b are of the second class, whereas T is the first-class 
constraint. The set K has a so-called special form (Gitman and Tyutin, 1990b). 
In this case, if we eliminate the variables e, Pe, • Px' K, P~, x~, 17r01, ~0, 
and Po, using the constraint K = 0, the Dirac brackets with respect to all the 
second-class constraints (K, d~) reduce to ones with respect to the constraints 
~b only. Thus, at this stage, we will only consider the variables x a, "tra, [, t[?, 
and ,ok and two sets of constraints--the second-class ones ~b and the first- 
class one T. Nonzeroth Dirac brackets for the independent variables are 

i. 
Ix ~, ~,}o(,) = 8r {x d, x'}o(,) = ~ [~ ,  ~'], 

1 
{x ~, Or}o<,) = - ~  ~ '~ ,  

I, 
{~ ,  ~'1o(4,) = - ~  (Sr a -- e~ d, r = 1, 2 . . . . .  2n (20) 

Going over to the quantum theory, we get the commutation relations between 
the operators .U, "~a, ~ by means of the Dirac brackets (20), 

[~, , ,]  = ,ar [~, ~ = - ~  [~ d, ~,q 

1 
[.U, 6q = - ~ 5  tT~,, [~a, 6q+ = ~ (8r - &-2"~'a, fi',) (21) 

We assume as usual (Gitman and Tyutin, 1990a-c) that the operator ~ has 
the eigenvalues ~ = ___ 1 by analogy with the classical theory, so that ~2 = 
1, and also we assume the equations of the second-class constraints ~ = 0. 
Then one can realize the algebra (21) in a Hilbert space ~t whose elements 
f ~ ~t are 2"+l-component columns dependent on x = (xa), d = 1, 2 . . . . .  2n, 

V_(x)] (22) 
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so thatf+(x) andf_(x) are 2"-component columns. A realization of the commu- 
tations relations has the form 

= x,tl [ _ I. t,m ,~2~§ , 4& ----5 [Xd, ,fi.~_r]_ 4& 2 [,F_fl, - ~r = --LOci 

t~a = ~ (Sa _ &-2,fra,fi.r)~r m'rrd S'2,+I ~ = ? (23) 
2~ z -- ' I 

where I and I are 2 "+l X 2 "+1 and 2" • 2" unit matrices, and ZK = diag(o -k, 
ok). The operator T corresponding to the first-class constraint T [see (19)] is 

/~ = [rn ~y_2~+l[~tSy2,+ I + LOd(~Y_2~+lyj) _ l~m], ~ = (--l)"s = +1 
tO 

(24) 

The latter operator specifies the physical states according to the scheme of 
quantization selected, 2Pf = 0. On the other hand, the state vectors f have to 
obey the Schr0dinger equation, which defines their "time" dependence, (L0/ 
0"r -- &)f = 0, 6~ = (~r~ + me) l/z, where the quantum Hamiltonian t~ corres- 
ponds the classical one to, (18). Introducing the physical time x ~ = ~'r instead of 
the parameter'r (Gitman and Tyutin, 1990a-c), we can rewrite the Schr0dinger 
equation in the following form [we can now write f = f(x), (x = x ~ x)]: 

L Ox-- 6 - ~& f(x) = 0 (25) 

Using (25) in the equation Tf = 0, namely replacing there the combination 
~&f by ~00f, one can verify that both components f• of the state vector 
(22) obey one and the same equation 

(tO~,F~ - ~m)f~(x) = 0, ~ = +1 (26) 

which is the 2n + 1 Dirac equation for a particle of spin ~12, whereas f+(x) 
can be interpreted [taking into account (25)] as the positive- and negative- 
frequency solutions to the equation, respectively. Substituting the realization 
(23) into the expression (6), we get the generators of the Lorentz 
transformations 

L ([1-'~ F~v] 0 ) (27) 

which have the standard form for both components ~(x). Thus, a natural 
interpretation of the components f~(x) is the following: f§ is the wave 
function of a particle with spin ~/2 and f*_(x) is the wave function of an 
antiparticle with spin ~12. 



Massive Dirac Particles in Odd Dimensions 2435 

4. D I M E N S I O N A L  DUALITY B E T W E E N  MASSIVE AND 
MASSLESS SPINNING PARTICLES 

As is known, the method of  dimensional reduction (Duff et  al., 1986; 
Green et  al., 1988) is often useful to construct models (actions) in low 
dimensions using appropriate models in higher dimensions. In fact, ideas 
began from the work of  Kaluza (1921) and Klein (1926). One can also 
mention that the method of dimensional reduction was used to interpret 
masses in supersymmetric theories as components of momenta in space of 
higher dimensions, which are frozen in the course of the reduction. It is 
interesting that the model of  Dirac particles in odd dimensions proposed in 
the present paper is related to the model (Gitman and Gonqalves, 1995; 
Grigoryan et  al. ,  1995) of  Weyl particles in even dimensions by means of a 
dimensional reduction. 

The action and the Hamiltonian of the latter model in D = 2(n + 1) 
dimensions have the form 

z" = .~ - ~t~• + 
(21,)(O-2)/2 

(D - 2)! 

$ 
~ I ~ v p 2 " " P D - I b v l ] I p 2  . . .  I.~pD_ 1 -Jr ~ b ~ 

e ,rr2 + ~'rr~"X H=-~ 
(21,) O-21/2 Ot ] 
~-~-  ~., ~..p2 ,o_,~r~,2... q,po-, + 2(o_2____ ~ ~. b ~ (28) 

In the canonical gauge similar to one which was considered above, in particu- 
lar, in the gauge ~0 = 0, only the first-class constraints remain, 

(20w-2)~ 
-- �9 ,ffl-hhP2 ~PD-I - t - -  

p o - ,  �9 

ot 
2(D_2)/2 'n" v = 0 (29) 

One can see that, in fact, among the constraints (29) only one is independent, 

T = "rr___~ T0 
"fro 

Thus one can use only one component o f b  ~ and put all the others to zero. Now 
one can do a dimensional reduction 2(n + 1) ~ 2n + 1 in the Hamiltonian and 
constraint To, putting also "rr2~+l = m, b 2"+t = --K, b ~ = b t = . . .  = b 2" = 
0. As a result of  such a procedure we just obtain the expressions (9) and 
(19) for the Hamiltonian and the constraint. The second-class constraints of  
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the model (28) also coincide with those of the model (2) after the dimensional 
reduction. Thus, there exists a dimensional duality between the massive 
spinning particles in odd dimensions and massless ones in even dimensions. 

5. DISCUSSION 

There are pseudoclassical models (PM) to describe all massive higher 
spins (integer and half-integer) in 3 + 1 dimensions (Berezin and Marinov, 
1975, 1977; Brink et  al., 1976, 1977; Casalbuoni, 1976; Barducci et  al., 
1976; Balachandran et  al., 1977; Henneaux and Teitelboim, 1982; Gitman 
and Tyutin, 1990a; Fradkin and Gitman, 1991; Srivastava, 1977; Gershun 
and Tkach, 1979; Howe et  al., 1988, 1989; Barducci et  al., 1976; Marnelius 
and Martenson, 1990, 1991). Generalization of the models to arbitrary even 
dimensions can be easily done by means of a trivial dimensional extension 
similar to the spin-one-half case. To get the PM for higher spins in arbitrary 
odd dimensions one can start from the model proposed in the present paper, 
using the ideas of Gitman and Tyutin (1996). Namely, one has to multiply 
the variables t~, • K, s in the action (2). Then an appropriate action has the form 

S = - ~ e  - e--~- - s m  ~ + i ~ a + l X a  + id~Aa(l~ a 
A = I  

N [ (2t,)n .p.pl...P2nl]lApl ... IllAp2nKA ] 
z~ = x" - a=l ~] L~'XA (2n)! 

dr 

(3O) 

Certainly, a detailed analysis of the action (30) and its quantization may 
demand significant technical work in higher dimensions. While in 2 + 1 
dimensions the model can be quantized explicitly for all higher spins both 
canonically and by means of the Dirac method (Gitman and Tyutin, 1996), 
in 3 + 1 dimensions the corresponding PM (Srivastava, 1977; Gershun and 
Tkach, 1979; Howe et  al., 1988, 1989; Barducci et  al. ,  1976; Marnelius and 
Martenson, 1990, 1991) was quantized canonically only for spins one-half 
(Berezin and Marinov, 1975, 1977; Brink et  al., 1976, 1977; Casalbuoni, 
1976; Barducci et  al. ,  1976; Balachandran et  al. ,  1977; Henneaux and Teitel- 
boim, 1982; Gitman and Tyutin, 1990a; Fradkin and Gitman, 1991) and 
one (Gitman et  al., 1995). As to the massless spin-one-half particles, the 
corresponding pseudoclassical model exists at present in arbitrary even dimen- 
sions (Gitman and Gonqalves, 1995; Grigoryan et  al., 1995; Gitman et  al., 
1994b). Its generalization to describe higher spins can be done in the same 
manner: 
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s =  

N 

Z ~ = ~ -- 

z - 

(I,O~XA--t,~p'vP[bAvd~Ap*A[--~sb~) (30 

There exists the dimensional duality mentioned above between the mod- 
els (30) and (31). 

Massless higher spins in arbitrary odd dimensions can be described 
pseudoclassically by the model which follows from (30) in the limit m ---> 0. 

Thus, at present, in principle, we have pseudoclassical models to describe 
all integer and half-integer spins in arbitrary dimensions. 
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